GafChromic Protocol

Multi-Channel Film Dosimetry + Gamma Map Analysis

Micke A.

Ashland Inc. – Advanced Materials

Ashland proprietary patented technology

GafChromic Film for Dose Measurement

- Radiotherapy (MV photonselectrons-protons)
 - EBT2, EBT3, EBT3+, EBT3P (1 cGy to >40 Gy)
 - EBT-XD 4x EBT3 Dose (*New* 2015)
 - MD-V3 10x EBT Dose
 - HD-V2 100x EBT Dose
- Radiology (kV photons)
 - XR-RV3 5 cGy to 15 Gy
 - XRQA2 1 mGy to 20 cGy

GafChromic Protocol

Advantages of GafChromic Film

- High spatial resolution
- Wide dynamic dose range

Achievements

- Accuracy of 0.5% dose error
- Efficient work flow
- Active error recognition

Protocol Elements

- GafChromic Film
- FilmQA Pro
- Multi-channel film dosimetry with rescaling
- Quick Phantom

GafChromic Protocol

Exposure and Scanning Procedure

- Film handling using GafChromic Quick Phantom
- Avoidance of measurement disturbances

Primary Calibration

- Efficient way to generate calibration
- Adaptive calibration for specific measurements

Measurement Evaluation

- Multi-channel dosimetry with calibration optimization
- Dose error estimation and active measurement design

Dose Comparison

- Parameterized comparison with sensitivity analysis
- Feedback for measurement improvements

GafChromic Protocol Exposure Procedure

GafChromic Quick Phantom

- Two Plastic Water[®] slabs
- Forced positioning on couch
- Automatic registration in FilmQA Pro

20

QUICK' phantom

Use with EBT3P

Groove and two holes to fit standard two Pin patient positioning index bar

Top Plate Locking Dowel Pins

Asymmetric Film

Registration Pins

GafChromic Protocol Scanning Procedure

Film Positioning on Scanner

- Highest dose at lateral center
- Most of exposed areas at lateral center

Flatten Film on Scanner

- Use Glass Plate on top of all films
- Cover scanner calibration window
- No masks, No film overlap
- Silica particles at EBT3 surface suppress Newton rings
- No Color Correction, 72 dpi, 48 bpp
- Same orientation of all Films

www.FilmQAPro.com

GafChromic Protocol Primary Calibration

Single calibration scan

- 9 exposed strips with *geometric* dose sequence + unexposed strip
- Single scan avoids scan to scan variations

Optimize for specific measurement

- Use only dose values relevant for measurement <(max dose + 10%)
- Select 3-5 exposures + unexposed film

Calibration criterion

- Minimize dose error (best consistency)
- Correlate only 'Shape' of functions

GafChromic Protocol Measurement Evaluation

- Application Film
 - Optimize calibration's dose range

Reference Film

- Reference dose at 'dose range of interest'
- Recommended reference dose ~(max dose - 15%)
- Multiple references possible to adjust best accuracy range

オ Zero Film

Do Not use dedicated strip

GafChromic Protocol Measurement Evaluation

Verify Reference Film

- Reference patch has lowest dose error
- Rescaling correction <<5% otherwise reference inconsistent

Verify Dose Accuracy

Gaf**Chro**mic

- Screen 'dose area of interest' in consistency map (dose error)
- Watch for artefact pattern e.g. lifted film corners

www.FilmQAPro.com

GafChromic Protocol Dose Comparison

Advanced Comparison

- Chart Passing Rate vs parameters
- RGB Passing Rates must be consistent
- Chart Passing Rate vs Dose recognize calibration bias
- Optimize calibration

Comparison Sensitivity

- Assure comparison is sensitive to targeted QA
 - e.g. spatial shift

Correlates average response

- System: Radiation machine Film Scanner
- Fixed protocol conditions: *dose range, ambient, scanner state*
- Mode of operation: film orientation, scan glass plate

→ Dose vs Color Channels X=RGB (optical density) $D = D_X(X_{ave}) \leftrightarrow X_{ave} = X(D)$ $D = D_X(d_{X,ave}) \leftrightarrow d_{X,ave} = d_{X,D}(D) \quad (d_X = -ln_{10}(X))$

Gaf**Chro**mic

✓ Multi-Channel Calibration ✓ Disturbance Factor

$$\Delta d = \frac{d_{X,scan}(D)}{d_{X,ave}(D)} = \frac{\text{specific response}}{\text{average response}} @ same \ dose$$

Example: Calibration Strip

- Calibration region all pixel have same (known) Dose
- Major contribution to Δd film non-uniformity
- Δd neutral with respect to X

$$d_{X,scan}(D_X) = d_{X,ave}(D_X) \Delta d$$

Disturbance factor connects D_X dose calculations, X=RGB

Consistency к

$$\kappa(\Delta \boldsymbol{d})^2 = \sum_{X \neq Y} (\boldsymbol{D}_X - \boldsymbol{D}_Y)^2$$

Consistency is dose offset averaged at single location

Only 1 Dose at each location

- Dose calculation must deliver same value, i.e. $\kappa(\Delta d) \rightarrow \min_{\Delta d}$
- Find Disturbance with best consistency, perfect κΞ0
- At all pixels: 4 equations, 4 variables D_X and Δd

Multi-Channel Dosimetry

Signal split into dose dependent and dose independent part

www.FilmQAPro.com

Multi-Channel Dosimetry Consistency

Film with Perfect Consistency

 Film's average dose response for X=RGB identical with Calibration

Imperfect Consistency

Film's average dose response for X=RGB deviates from Calibration

Assume Film has Same Response

- Imperfect Consistency is measure for Dose Error
- Offset between D_X estimates Dose Error

Example

 Profiles original calibration patch and 90° rotated scan

Multi-Channel Dosimetry Consistency Map

Film scan measurement raw data

- Dose map D_X
 measurement result
- Disturbance ∆d removed error
- Consistency κ
 remaining error
 κ absolute error
 κ/D relative error

Example: Different sensors at different lateral position + lateral scanner effect cause (slightly) different average response.

Multi-Channel Dosimetry Disturbance Map

- Disturbance ∆d removed error
- Presents relative film thickness when ∆d dominated by film non-uniformity → Uniformity Map Film uniformity: spec ±1%, typical ±0.5%
- | Δd -1| >> 1% indication of other dominant disturbances
- Image pattern hints potential error sources
- Dose dependent disturbances mitigated e.g. lateral effect, curled film, calibration bias

Example: Calibration scan various dose levels (contrast advanced)

Optimize Calibration

- Lower consistency = better calibration
- Offset in calibration points is not a quality criterion
- Calibration strips must be consistent with calibration

Calibration goal

- Correlate calibration parameter for Perfect Consistency $\kappa \equiv 0$
- Calibration functions
 { R(D), G(D), B(D) }
 must match film dose spectrum

Optimize Consistency к shown relative consistency

Single channel calibration

average system response

 x = x(D) x = RGB each channel fitted separately

Multi-channel calibration

Gaf**Chro**mic

- X(D) = A + B x(a + b D) X = RGB rescales calibration x a, b dose scaling, A, B color scaling
- Correlation D_R(R_{ref}) = D_G(G_{ref}) = D_B(B_{ref}) optimize consistency at reference points
- Compensates calibration patch distortions if multi channel dose is used to rescale dose

Polynomial Calibration

Polynomial fit

- $\mathbf{x} (\mathbf{D}) = \sum \mathbf{A}_i \mathbf{D}^i$
- Least square solution $\frac{\sum(\mathbf{x_i} - \mathbf{x}(\mathbf{D_i}))^2}{\max \text{many parameters, oscillations}}$

IDo Not Use!

- Many parameters (many calibration points)
- Non-Monotonic function (physical incorrect!)
- Non-Invertible function (optimization consistency at reference points costly)
- Uncontrolled behavior between calibration point (additional calibration points to correct)

Rational Calibration

Primary Calibration fits only function Shape

Example: Reciprocal function
 x = 1 / D

no parameters, 'pure' shape

Recalibration

- X(D) = A + B / (C + D) rescales calibration x to absolute dose
- Rational function with 3 parameters (only 3 dose points stipulate calibration)
- Monotonic function (always physical correct)
- Invertible function (dose vs. color) $D_x = -C + B / (-A + X)$

Dose

ASHLAN

Model functions

Use Rational functions

Reciprocal X(D) = A+ B/(C+D)

Linear X(D) = (A+BD)/(C+D)

Quadratic $X(D) = (A+BD+CD^2)/(E+D)$

Optimize Consistency

Enforce

 $D_R(R_{calib}) = D_G(G_{calib}) = D_B(B_{calib}) = D_{calib}$ for all calibration pixels X_{calib} (>10000 equations)

- Optimize calibration regions
- Select best model function
- Do Not D_R(R_{ave}) = D_G(G_{ave}) = D_B(B_{ave}) = D_{calib} for all calibration dose points (<10 equations)

- Single Calibration Scan with 10 calibration strips
 - Use Geometric Sequence or Equal Color Steps

Select only patches relevant for measurement

Optimize calibration to minimize dose error

A. Micke, Europe, February 2015 www.FilmQAPro.com

Gaf**Chro**mic

Two point recalibration

- 1 unexposed + 1 exposed film Minimum cost possible
- Dose scaling (A=0, B=1)
 X(D) = x(a + bD), X = RGB
- Color scaling (a=0, b=1)
 X(D) = A + B x(D), X = RGB

Assumption

Gaf**Chro**mic

 Calibration functions keep shape Shape(x) = Shape(X), x, X=RGB

Single scan Evaluation

compensates for

- Ambient conditions: temperature, humidity
- Inter-scan scanner variations,
- Post exposure time, film aging

Rescaling - Post Exposure Age

Absolute aging wait t = 24 h $\Delta D(t) < 0.5\%$

A. Micke, Europe, February 2015 www.FilmQAPro.com Relative aging wait t = 4 Δt $\Delta D(t) < 0.5\%$

Triple point recalibration

- 1 unexposed + 2 exposed film Higher cost
- X(D) = A + B x(CD) (3 point rescaling)
- X(D) = A + B x(D^C)
 X = RGB
- Requires 2 exposures
 - Enforces perfect consistency at references
 - Recalibration includes rescaling and shape correction
- Single scan Evaluation compensates for
 - All two point recalibration benefits
 - Shape changing properties
 i.e. any primary calibration can be used

Single point recalibration

- 1 unexposed it's free and always possible
- Dose shift (A=0, B=1, b=1)
 X(D) = x(a + D), X = RGB
- Color shift (a=0, b=1, B=1)
 X(D) = A + x(D), X = RGB

Assumption

 Calibration functions keep shape Shape(x) = Shape(X), x, X=RGB disturbance caused by offset only

Single scan Evaluation

compensates for

Offset generating disturbances

EBT3+ - Reference Recalibration

- Configuration same as EBT3
- Attached reference strip
 - Strip properties as close as possible to patient film
- Perforated Sheet
 easy to detach reference strip
 - Saves film cutting
 - Standardized strip size
- EBT3+ available since 2012

Consistency Comparison

Consistency measured across frame $D_{max} = 243 \text{ cGy}$, $D_{ave} = 139 \text{ cGy}$

Single vs Multi-Channel Comparison

Differential pixel-wise direct comparison

- Multi channel: 90% passing rate at 2.7% tolerance for All channels
- Single channel: 90% passing rate at 4.3%/5.1%/18.4% RGB
- Multi channel method is consistent, single channel is Not

Multi-Channel Dosimetry Dose Map Consistency

- Dose map error estimation known before comparison
- Detect `abnormal' scans
 - 90° rotation, curling, Newton rings

Example dose consistency map (iso-map) peak error ~2%

Multi-Channel Film Dosimetry Dose to Plan Comparison

Dose map error can dominate comparison

- ~0.5% achievable (vs. 3% with single channel method)
- Comparison Criteria 3%/3mm, 2%/2mm
 - Triple channel: 1% << 3%/2%, *i.e.* majority < tolerance
 - Single channel: 3% ~ 3% test, *i.e.* 50% > tolerance
- Passing rates improves more than dose accuracy

Gamma Map Comparison Passing Rate Dependencies

Passing Rate vs. Tolerance

Gaf**Chro**mic

Passing Rate vs. Distance (DTA)

Gamma Map Comparison Dose Map Projection

Plan Pixel Position

Gamma no projection Gamma projected

Gamma Map Comparison Passing Rate Dependencies

Passing Rate vs. Dose Map Resolution

Passing Rate vs. Plan Resolution

Gamma Map Comparison Passing Rate Dependencies

Passing Rate @ best location vs. Noise

Passing Rate @ 2 mm shift vs. Noise

Gamma Map **2%/2mm** - FilmQA Pro RapidArc example Equi-distributed noise added, x axis shows maximum amplitude

Gamma Map Comparison

plan pixel and overlaid pixels of registered dose map same standard deviation low sample number fails, high sample number passes

Use dose average across plan pixel e.g. Projection of dose map to plan coordinate system Filtering cannot fix this problem!

Lateral Scanner Non-Linearity Normalized Blank Scan

Lateral effect increases with dose

- Compensates only weakest occurrence of lateral effect
- Adding disturbances
 - Non-uniformity of blank film
 - Noise of blank scan
- Worsens consistency for exposed areas
- Improved Gamma passing rates reported due to noise

! DO NOT USE !

Gaf**Chro**mic

Calibration patch consistency comparison				
dose <cgy></cgy>	Consistency <cgy></cgy>		Consistency <%>	
	None	Blank scan	None	Blank scan
202.0	8.8	11.1	4.3	5.5
151.5	6.8	8.9	4.5	5.9
101.0	5.9	8.4	5.9	8.3
50.5	5.9	7.9	11.6	15.6
0.0	4.8	0.4	Infinity	Infinity

Triple Channel Dosimetry Lateral Scanner Non-Linearity

Scanner signal changes with lateral position (sensor direction)

- EBT film polarization causes lateral effect
- Non-dose-dependent part of lateral effect is compensated
- Mitigation only (partial compensation)

EBT-XD - Dose Range

- EBT-XD optical similar
 to EBT3 at 4x dose
 - Use at $D_{max} > 20 \text{ Gy}$
 - Wide fields
 use at D_{max} > 5 Gy
 - High dose range better Low dose range worse
- Format same as EBT3
- EBT-XD available since 2015/1

Multi-Channel - Dose Range Example

SBRT 20Gy case

- Gamma 2 mm
- Tolerance to reach 90% passing rate
- ✓ EBT-XD
 - Standard protocol RGB 1.2/1.2/1.2%
- ≁ EBT3
 - Standard protocol RGB 2.8/1.7/1.5%
 - With 2nd Reference RGB 1.5/1.6/1.6%

Passing Rate vs Gamma Tolerance

Comparison Sensitivity

Change of Passing Rate

Sensitivity = $\frac{1}{Change of Disturbance}$

- Ability of Comparison Map to QA specific Dose Disturbance
 - Disturbance types
 - Spatial shift
 - Spatial rotation
 - Dose scaling
 - TPS calculated plan offset
 - Random or Systematic

Example:

SBRT ~5x5cm² field

GafChromic Protocol

Separate Dose and Dose-independent effects

- Compensates for film thickness variation
- Mitigates scanner distortions

Enables entire film dose range

- Dynamic range ratio >1000
- EBT2/EBT3 5 cGy >20 Gy , EBT-XD 4x EBT3 range

Significant improvement of dose map accuracy

~0.5% routinely achievable

Consistency based estimation of dose error

Active error improvement using reference exposures

Efficient workflow

- Package "Quick Phantom EBT film FilmQA Pro" enables best practice
- Automatic registration using phantom fiducials
- Evaluation 30 min after exposure possible

www.FilmQAPro.com

Micke, Lewis, Yu - Multi-channel Film Dosimetry with Non-Uniformity Correction, Medical Physics, 38 (2011) 5, pp. 2523.

Lewis, Micke, Yu, Chan - An Efficient Protocol for Radiochromic Film Dosimetry combining Calibration and Measurement in a Single Scan, Medical Physics, 39 (2012) 10, pp. 6339.

Gaf<mark>Chro</mark>mic

